Alternations in hepatic expression of fatty-acid metabolizing enzymes in ArKO mice and their reversal by the treatment with 17β-estradiol or a peroxisome proliferator

2001 
We generated aromatase gene knockout mice (ArKO mice) by targeting disruption of Cyp19, which encodes an enzyme responsible for conversion of androgens to estrogens. We found that ArKO males developed hepatic steatosis spontaneously with aging, indicating that the function of Cyp19 is required to maintain constitutive lipid metabolism in male mice. Plasma lipoprotein analysis using a gel permeation chromatography revealed that high density lipoprotein (HDL)-cholesterol levels were slightly higher in ArKO males than in wild-type males, whereas no other obvious alternations in the profiles were detected. Nevertheless, analysis of lipoprotein compositions by SDS-polyacrylamide gel electrophoresis demonstrated apparent reduction in the amounts of apolipoprotein E, functioning in receptor-mediated clearance of lipoproteins in the liver, in the IDL/LDL fraction of ArKO males as compared with that of wild-type males. Biochemical analysis on the ArKO livers revealed suppression of mRNA expression and activity of enzymes involved in fatty acid β-oxidation. The impairment was reversed to the wild-type levels by treatment with 17β-estradiol or bezafibrate, the latter is a synthetic peroxisome proliferator. These findings indicated a pivotal role of estrogen in supporting constitutive hepatic expression of genes involved in fatty acid β-oxidation and in maintaining lipid homeostasis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    39
    Citations
    NaN
    KQI
    []