1H NMR Metabonomics Indicates Continued Metabolic Changes and Sexual Dimorphism Post-Parasite Clearance in Self-Limiting Murine Malaria Model

2013 
Malaria, a mosquito-borne disease caused by Plasmodium spp. is considered to be a global threat, specifically for the developing countries. In human subjects considerable information exists regarding post-malarial physiology. However, most murine malarial models are lethal, and most studies deal with acute phases occurring as disease progresses. Much less is known regarding physiological status post-parasite clearance. We have assessed the physiological changes at the organ levels using 1H NMR based metabonomics in a non lethal self-clearing murine malarial model of P. chabaudi parasites and Balb/C, far beyond the parasite clearance point. The results showed distinct metabolic states between uninfected and infected mice at the peak parasitemia, as well as three weeks post-parasite clearance. Our data also suggests that the response at the peak infection as well as recovery exhibited distinct sexual dimorphism. Specifically, we observed accumulation of acetylcholine in the brain metabolic profile of both the sexes. This might have important implication in understanding the pathophysiology of the post malarial neurological syndromes. In addition, the female liver showed high levels of glucose, dimethylglycine, methylacetoacetate and histidine after three weeks post-parasite clearance, while the males showed accumulation of branched chain amino acids, lysine, glutamine and bile acids.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    13
    Citations
    NaN
    KQI
    []