Patients with low back pain use stiffening strategy to compensate for movement control during active prone hip rotation: A cross-sectional study.

2021 
BACKGROUND New motor adaptation to pain theory suggests that patients with low back pain (LBP) use the lumbopelvic stiffening strategy by redistribution of within and between muscle activities to protect painful structure. This could result in an altered postural control of the lumbopelvic region during active prone hip rotation (PHR). OBJECTIVE To investigate coordination and timing of lumbopelvic and hip movements, and smoothness of the lumbopelvic control during PHR between participants with and without LBP. METHODS Eight participants with LBP and eight participants without LBP were recruited. The electromagnetic tracking system was used to record kinematic data during PHR. Cross-correlation between hip rotation and lumbopelvic movement in the transverse plane was calculated. Correlation at zero time-lag, time-lag, correlation at time-lag, and maximal lumbopelvic motion were derived. Frequency of movement disruption was identified. An independent t-test was used in conjunction with the effect size and 95% minimal detectable difference (MDD95) to determine the difference in kinematic parameters. RESULTS Participants with LBP demonstrated a significant delay (exceeding MDD95) in lumbopelvic motion while nonsignificant frequency of disrupted motion on the painful side PHR demonstrated a trend with a large effect size that exceeded MDD95. There were trends with moderate to large effect sizes and differences exceeding MDD95 in delay of lumbopelvic motion with greater movement disruption on the nonpainful side in participants with LBP. CONCLUSION Participants with LBP used a lumbopelvic stiffening strategy for postural control to protect painful structures; however, the stiffening might complicate efforts to smoothly control lumbopelvic movement.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    0
    Citations
    NaN
    KQI
    []