Thermal synthesis of Hematite nanoparticles: Structural, magnetic and morphological characterizations

2020 
Hematite (α-Fe2O3) nanoparticle was synthesized using organometallic compound - ferrocene carboxaldehyde through solventless solid state thermal decomposition technique. The crystal structure, magnetic and morphological properties of the decomposed material were studied using powder X-ray diffraction (XRD), superconducting quantum interference device (SQUID) magnetometry, 57Fe Mossbauer spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDX) techniques. Structural study confirmed that the synthesized material is hematite with hexagonal phase and good crystallinity. The temperature-dependent magnetization measurement exhibited the Morin transition - the yardstick for hematite formation. Mossbauer spectroscopic study confirmed the purity of phase of the synthesized material. The SEM study observed mostly the agglomerated tiny particles along with some ring-shaped surface structures. The TEM study of the synthesized material showed that the highest distribution of the particles with ~5 nm size. The observed EDX spectra confirmed the existence of Fe and O in the synthesized material. The solid state reaction process leading to hematite on decomposition of ferrocene carboxaldehyde has also been proposed. Present study describes a simple process for the preparation of pure hematite nanoparticle by solventless method.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []