Thin-Film Deposition Via Pulsed Laser Ablation

1996 
We report on a novel experimental approach for thin-film deposition via pulsed laser ablation. A combination of design features including the incorporation of original sample manipulation methods as well as enhanced analytical capabilities allow for experimental control and flexibility for thin-film deposition studies of a variety of materials. Here, the application is illustrated with a study of 532 nm pulsed laser ablation and subsequent deposition of CdTe.Conditions have been found that produce a mildly energetic ablation plume, and the average kinetic energies for the neutral and ionic ablation species in the plume have been determined to be approximately 2 and 11 eV, respectively. It has been shown that in the presence of an electric field the ionic species can be diverted away from the detector (and subsequently from the eventual deposit). Thin film deposits clearly reveal an increase in the number of sub-micron particles when direct ablation ions contribute to the deposition. The possibility for extraction of ablation ions and preparation of ablation plumes of neutrals only has been clearly demonstrated.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    8
    References
    3
    Citations
    NaN
    KQI
    []