Graphene and graphene-like two-denominational materials based fluorescence resonance energy transfer (FRET) assays for biological applications.

2017 
Abstract In the past decades, Forster resonance energy transfer (FRET) has been applied in many biological applications to reveal the biological information at the nanoscale. Recently, graphene and graphene-like two-dimensional (2D) nanomaterials started to be used in FRET assays as donors or acceptors including graphene oxide (GO), graphene quantum dot (GQD), graphitic-carbon nitride nanosheets (g-C 3 N 4 ) and transition metal dichalcogenides (e.g. MoS 2 , MnO 2, and WS 2 ). Due to the remarkable properties such as large surface to volume ratio, tunable energy band, photoluminescence and excellent biocompatibility, these 2D nanomaterials based FRET assays have shown great potential in various biological applications. This review summarizes the recent development of graphene and graphene-like 2D nanomaterials based FRET assays in applications of biosensing, bioimaging, and drug delivery monitoring.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    134
    References
    103
    Citations
    NaN
    KQI
    []