Fault detection and diagnosis based on a hybrid dynamic simulator

2009 
Abstract The complexity and the size of the industrial chemical processes induce the monitoring of a growing number of process variables. Their knowledge is generally based on the measurements of system variables and on the physico-chemical models of the process. Nevertheless, this information is imprecise because of process and measurement noise. So the research ways aim at developing new and more powerful techniques for the detection of process faults. This paper presents a method for the fault detection based on the comparison between the real system and the reference model evolution generated by the extended Kalman filter. The reference model is simulated by the dynamic hybrid simulator, PrODHyS. It is a general object-oriented environment which provides common and reusable components designed for the development and the management of dynamic simulation of industrial systems. The use of this method is illustrated through a didactic example relating to the field of Chemical Process System Engineering.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    1
    Citations
    NaN
    KQI
    []