Finite element analysis of inelastic structures.

1968 
Differential stress-strain relationships are used to generate a system of simultaneous firstorder differential force-displacement equations which are integrated numerically to obtain the stresses, strains, and displacements in inelastic structures. For the biaxially stressed element, the concept of isotropic hardening and a generalized stress are used to evaluate an effective modulus and Poisson's ratio, which vary continuously from their initial values during elastic straining action to their asymptotic values during intense plastic straining action. The surface of plasticity for this element closely approximates the von Mises surface when the generalized stress is set equal to the von Mises stress and the strain distribution is essentially identical to that obtained by the Prandtl-Reuss incremental flow theory. The analysis of the MIT shear lag structure is presented to demonstrate the applicability of the method to systems of practical size and interest. Nomenclature A = equilibrium matrix B = compatibility matrix C = stress-strain matrix C = differential stress matrix E = Young's modulus Et = tangent modulus Es = secant modulus K — stiffness matrix K = differential stiffness matrix P = applied load parameter u = element nodal displacements X = element nodal forces X = load constant n = Poisson's ratio fjLt = tangent Poisson's. ratio Us = secant Poisson's ratio e = strain a- = normal stress
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    8
    References
    74
    Citations
    NaN
    KQI
    []