Kinetic and microstructural studies of Cp2ZrCl2 and Cp2HfCl2-catalyzed oligomerization of higher α-olefins in mPAO oil base stocks production

2021 
Herein a quenched-flow kinetic technique was applied to calculate the rate constants of 1-hexene and 1-octene oligomerization catalyzed by the Cp2ZrCl2 and Cp2HfCl2/MAO catalyst systems, and subsequently a mechanism for the higher α-olefin oligomerization reaction was proposed. The oligomerization results showed that Zr-based catalyst in the oligomerization of 1-octene had the highest activity of 17 in comparison to Hfbased one with an activity value of 15 g oligomer/(mmolCat.h)). According to the obtained results, increasing monomer length led to a shift in molecular weight and polydispersity index value (Mw/Mn) to lower values. Furthermore, the microstructure-viscosity relationship was followed by the calculation of branching ratio and short-chain branching percentage. The obtained results revealed that, the oligomers synthesized by the Cp2HfCl2 catalyst had lower short chain branching ratio value and short-chain branching percentages. According to the kinetic results, the initiation rate constant (ki) of Zr-based catalyst was higher than that of Hf-based catalyst, and the order of calculated propagation rate constants was Zr>Hf for both the 1-hexene and 1-octene-based oligomerizations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []