Structural, electrical transport and optical studies of Li ion doped ZnO nanostructures

2014 
In the present work, we studied the morphological aspects, electrical transport and optical properties of pure and lithium ion doped semiconducting ZnO nanostructures successfully prepared by a co-precipitation method. The effect of lithium doping and various morphologies on the structural, electrical and optical properties of these nanostructures were investigated. The X-ray diffraction (XRD) pattern demonstrated that the Li doped ZnO nanostructures exhibits the hexagonal wurtzite structure. A slight change in the 101 peak position was detected among the samples with various morphologies. The UV-Vis diffused reflectance spectroscopic (DRS) studies showed that the band gap increases with Li doping, due to the Burstein-Moss band filling effect. Photoluminescence (PL) studies confirm that the Li incorporation into ZnO material can induce oxygen enrichment of ZnO surface that leads to increase the cyan emission. This material could be used in light emitting diodes in nanoscale optoelectronic devices.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    23
    Citations
    NaN
    KQI
    []