Selective redundancy to improve reliability and to slow down delay degradation due to gate oxide breakdown

2012 
Because of the aggressive scaling into the nanometer regime, degradation due to wearout significantly impairs design parameters. For instance, such wearout is caused by gate oxide breakdown, which decreases the operating lifetime of integrated circuits to an extent that cannot be neglected by circuit designers to date. In this paper, we introduce an approach which applies selective redundancy to different combinational designs in order to improve reliability as regards gate oxide breakdown. Therefore, the most vulnerable transistor stacks of standard cells are doubled based on activity and the propagation delay of the design. Finally, reliability improvements of up to 75 % are presented that are gained with Spice simulations. Such improvements come at the price of overhead for area and power consumption as well as delay of at most 14 %. However, it is interesting to notice that the initial delay penalty of our enhanced designs finally turn into a timing advantage, as the designs are more and more affected by wearout over time. Hence, this advantage translates into further reliability improvements when clock requirements are also considered. Besides, it needs to be noted that the presented strategies can additionally improve defect yield.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    12
    References
    1
    Citations
    NaN
    KQI
    []