Crystal silicon heterojunction solar cells by hot-wire CVD

2008 
Hot-wire chemical vapor deposition (HWCVD) is a promising technique for fabricating Silicon heterojunction (SHJ) solar cells. In this paper we describe our efforts to increase the open circuit voltage (V oc ) while improving the efficiency of these devices. On p-type c-Si float-zone wafers, we used a double heterojunction structure with an amorphous n/i contact to the top surface and an i/p contact to the back surface to obtain an open circuit voltage (V oc ) of 679 mV in a 0.9 cm 2 cell with an independently confirmed efficiency of 19.1%. This is the best reported performance for a cell of this configuration. We also made progress on p-type CZ wafers and achieved 18.7% independently confirmed efficiency with little degradation under prolong illumination. Our best Voc for a p-type SHJ cell is 0.688 V, which is close to the 691 mV we achieved for SHJ cells on n-type c-Si wafers.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    6
    References
    20
    Citations
    NaN
    KQI
    []