Real-time implementation of SMC–PID for Magnetic Levitation System

2019 
Magnetic levitation is significant in almost all arenas of engineering. This principle is used to levitate objects such as a bullet train, flywheel, etc. This paper presents an experimental set-up of Magnetic Levitation System (MLS) in which a ball is levitated to a desired position and is sustained at a desired level for a stipulated time. The ball position is measured using an optoelectronic sensor and a controller is used to determine the time span of the ball at desired heights. To achieve this, a Sliding Mode Controller (SMC) is designed in such a way so as to regulate the current, which in turn controls the position through an electromagnet. Real-time observations of such ball positions have been recorded and compared to those of conventional PID (Proportional Integral Derivative) and robust SMC. Disturbance rejection, servo operation and set point tracking have also been tested and verified for the same. The outcome of such results processed through MATLAB proves that SMC’s performance is predominant over other controllers.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    4
    Citations
    NaN
    KQI
    []