Validation of a province-wide commercial food store dataset in a heterogeneous predominantly rural food environment.

2020 
OBJECTIVE: Commercially available business (CAB) datasets for food environments have been investigated for error in large urban contexts and some rural areas, but there is a relative dearth of literature that reports error across regions of variable rurality. The objective of the current study was to assess the validity of a CAB dataset using a government dataset at the provincial scale. DESIGN: A ground-truthed dataset provided by the government of Newfoundland and Labrador (NL) was used to assess a popular commercial dataset. Concordance, sensitivity, positive-predictive value (PPV) and geocoding errors were calculated. Measures were stratified by store types and rurality to investigate any association between these variables and database accuracy. SETTING: NL, Canada. PARTICIPANTS: The current analysis used store-level (ecological) data. RESULTS: Of 1125 stores, there were 380 stores that existed in both datasets and were considered true-positive stores. The mean positional error between a ground-truthed and test point was 17.72 km. When compared with the provincial dataset of businesses, grocery stores had the greatest agreement, sensitivity = 0.64, PPV = 0.60 and concordance = 0.45. Gas stations had the least agreement, sensitivity = 0.26, PPV = 0.32 and concordance = 0.17. Only 4 % of commercial data points in rural areas matched every criterion examined. CONCLUSIONS: The commercial dataset exhibits a low level of agreement with the ground-truthed provincial data. Particularly retailers in rural areas or belonging to the gas station category suffered from misclassification and/or geocoding errors. Taken together, the commercial dataset is differentially representative of the ground-truthed reality based on store-type and rurality/urbanity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    0
    Citations
    NaN
    KQI
    []