Influence of hydroxyl contents on photocatalytic activities of polymorphic titania nanoparticles

2009 
Abstract Polymorphic titania nanoparticles, prepared by a Water-based Ambient Condition Sol (WACS) process, were post-treated by a Solvent-based Ambient Condition Sol (SACS) process in sec -butanol. All samples were characterized for phase composition, surface area, lattice hydroxyl contamination, and particle morphology by X-ray diffraction, N 2 physisorption, FT-IR, solid state Magic Angle Spinning (MAS) 1 H NMR and scanning electron microscopy. The results were compared to a commercial titania, Degussa P25. Evaluation of methyl orange degradation under UV irradiation results showed that the lower lattice hydroxyl content in SACS titania nanoparticles enhances photocatalytic activity. As-prepared titania and post-treated SACS samples, which have similar surface areas and crystallinity, were compared in order to prove that the superior photocatalytic activity came from a reduction in lattice hydroxyl content.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    25
    Citations
    NaN
    KQI
    []