Surface treatment properties of CdS quantum dot-sensitized solar cells

2014 
The dye-sensitized solar cells (DSSCs) are attractive due to their low cost and promising efficiency. One of the research perspectives in the respective field is to replace the expensive and photodegradable ruthenium metal-based dyes. Present work describes a simple, modified in situ route designed by mimicking the adsorption principle of dyes in DSSCs for surface modification and linking of CdS-Quantum Dots (QDs) to TiO2 electrode. An organic compound 2-mercaptoethanol (ME) was used as a surface modifying and linking agent. By following this route it was expected to get a well assembled layer of CdS QDs for better cell performance but performances were not as expected. The main reason for low photocurrent density is the partial coverage of QDs surface by ME and the spatial distance between QDs and TiO2 electrode. Additional surface treatment of the CdS QDs sensitized TiO2 electrode resulted in an increase in the photocurrent density and photovoltage. This indicates that ME is not an effective capping agent and thus partially covers the QDs surface. The remaining sites, not covered by ME were passivated by sulfur ions in the ionic solution.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    7
    Citations
    NaN
    KQI
    []