Microstructure, biodegradation, antibacterial and mechanical properties of ZK60-Cu alloys prepared by selective laser melting technique

2018 
Abstract Magnesium (Mg) alloys are receiving increasing attention for body implants owing to their good biocompatibility and biodegradability. However, they often suffer from bacterial infections on account of their insufficient antibacterial ability. In this study, ZK60- x Cu ( x  = 0, 0.2, 0.4, 0.6 and 0.8 wt%) alloys were prepared by selective laser melting (SLM) with alloying copper (Cu) to enhance their antibacterial ability. Results showed that ZK60-Cu alloys exhibited strong antibacterial ability due to combination of release of Cu ions and alkaline environment which could kill bacteria by destroying cellular membrane structure, denaturing enzymes and inhibiting deoxyribonucleic acid (DNA) replication. In addition, their compressive strength increased due to grain refinement and uniformly dispersing of short-bar shaped MgZnCu phases. Moreover, ZK60-Cu alloys also exhibited good cytocompatibility. In summary, ZK60-Cu alloys with antibacterial ability may be promising implants for biomedical applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    34
    Citations
    NaN
    KQI
    []