Quantifying energy use efficiency via maximum entropy production: A case study from longleaf pine ecosystems

2018 
Abstract. Global ecosystems vary in their function, and therefore resilience to disturbance, as a result of their location on Earth, structure, and anthropogenic legacy. Resilience can therefore be difficult to describe solely based on energy partitioning, as it fails to effectively describe how ecosystems use available resources, such as soil moisture. Maximum entropy production (MEP) has been shown to be a better metric to describe these differences as it relates energy use efficiencies of ecosystems to the availability of resources. We studied three sites in a longleaf pine ecosystem with varying levels of anthropogenic legacy and biodiversity, all of which were exposed to extreme drought. We quantified their resilience from radiative, metabolic and overall MEP ratios. Sites with anthropogenic legacy had ~ 10 % lower overall and metabolic energy use efficiency compared to more biodiverse sites. This resulted in lower resilience and a delay in recovery from drought by ~ 1 year. Additionally, a set of entropy ratios to determine metabolic and overall energy use efficiency explained more clearly site-specific ecosystem function, whereas the radiative entropy budget gave more insights about structural complexities at the sites. Our study provides foundational evidence of how MEP can be used to determine resiliency across ecosystems globally.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    81
    References
    5
    Citations
    NaN
    KQI
    []