Assessment of In vitro Antibacterial Activity and Cytotoxicity Effect of Nigella sativa Oil

2016 
Background: Methicillin resistance is a serious health concern since it has spread among Staphylococcus aureus and coagulase-negative Staphylococci (CoNS) that are frequent community and nosocomial pathogens worldwide. Methicillin-resistant strains are often resistant to other classes of antibiotics, making their treatment difficult. Nigella sativa oil is known to be active against Gram-positive cocci, yet its in vitro cytotoxicity is rarely investigated, is a proper and powerful candidate for treatment of methicillin-resistant isolates. Objectives: The aim of this study is to evaluate the in vitro antibacterial activity and cytotoxicity effect of N. sativa oil. Materials and Methods: The minimal inhibitory concentrations (MICs) of N. sativa oil were determined by broth microdilution method against four different American Type Culture Collection strains, 45 clinical isolates of methicillin-resistant S. aureus (MRSA), and 77 methicillin-resistant CoNS (MRCoNS). The effects of different dilutions (0.25 μg/mL, 0.5 μg/mL, and 1 μg/mL) of N. sativa oil on the proliferation of gingival fibroblasts were evaluated. Results: The MIC values of N. sativa oil against clinical isolates of Staphylococci were between Conclusion: In the present study, the oil of N. sativa was very active against MRSA and MRCoNS and had no in vitro cytotoxicity at relevant concentrations. These findings emphasize that there is a requirement for further clinical trials on N. sativa oil for safe medical management of infections caused by methicillin-resistant Staphylococci . Abbreviation used: ATCC: American Type Culture Collection; CLSI: Clinical and Laboratory Standards Institute; CoNS: Coagulase-negative Staphylococci; DMEM: Dulbecco's modified Eagle's medium; DMSO: Dimethyl sulfoxide; FBS: Fetal bovine serum; HGF: Human gingival fi broblast; MIC: Minimal inhibitory concentration; MRCoNS: Methicillin-resistant CoNS;MRSA: Methicillin-resistant S. aureus
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    23
    Citations
    NaN
    KQI
    []