Temperature dependence of magnetic anisotropy constant in iron chalcogenide Fe3Se4: Excellent agreement with theories

2012 
Magnetic hysteresis loops were measured for ferrimagnetic iron chalcogenide Fe3Se4 nanoparticles in the whole temperature range below the Curie temperature TC (315 K). The coercivity of the material is huge, reaching about 40 kOe at 10 K. The magnetic anisotropy constant K was determined from the magnetic hysteresis loop using the law of approach to saturation. The deduced anisotropy constant at 10 K is 5.22×106 erg/cm3, which is over one order of magnitude larger than that of Fe3O4. We also demonstrated that the experimental magnetic hysteresis loop is in good agreement with the theoretical curve calculated by Stoner and Wohlfarth for a noninteracting randomly oriented uniaxial single-domain particle system. Moreover, we show that K is proportional to the cube of the saturation magnetization Ms, which confirms earlier theoretical models for uniaxial magnets.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    40
    Citations
    NaN
    KQI
    []