Simple, Rapid and Sensitive Detection of Parkinson's Disease Related Alpha-Synuclein by DNA Aptamer Assisted Liquid Crystal Biosensor

2021 
Alpha-synuclein (αS) has been proposed as a potential biomarker for the diagnosis of Parkinson's disease (PD). However, the detection of αS using a simple, rapid and sensitive approach is still challenging. Herein, we construct a new type of biosensor for the detection of αS, combining the stimuli-responsiveness of liquid crystals (LCs) and the specific interaction of a DNA aptamer with proteins. In principle, the positively charged surfactant hexadecyltrimethylammonium bromide (CTAB) binds with the negatively charged DNA aptamer via electrostatic interactions; in the presence of αS, the DNA aptamer specifically binds with αS and releases CTAB, which is an amphiphilic molecule and subsequently assembles at the LC-aqueous interface, resulting in a homeotropic alignment of LCs with a dark optical signal. In the absence of αS, CTAB binds with the DNA aptamer without affecting the alignment of LCs, which shows planar anchoring with a bright optical signal. The response time of LCs towards αS is rapid and can be down to minutes. The LC biosensor established here has a good specificity for αS and can recognize αS even from a mixture of proteins. The LC biosensor also exhibits high sensitivity with a limit of detection of αS as low as 10 pM, which is comparable to that of the enzyme-linked immunosorbent assay. This work provides a new strategy for the detection of αS in a simple, rapid and sensitive manner, possessing promising potentials towards early diagnosis and clinical applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    3
    Citations
    NaN
    KQI
    []