C2H N = 1 − 0 and N2H+ J = 1 − 0 observations of Planck Galactic cold clumps

2019 
A survey of C2H N=1-0 and N2H+ J=1-0 toward Planck Galactic cold clumps (PGCCs) was performed using the Purple Mountain Observatory's 13.7 m telescope. C2H and N2H+ were chosen to study the chemical evolutionary states of PGCCs. Among 121 observed molecular cores associated with PGCCs, 71 and 58 are detected with C2H N=1-0 and N2H+ J=1-0, respectively. The detected lines of most sources can be fitted with a single component with compatible Vlsr and line widths, which confirms that these PGCC cores are very cold (with gas temperatures 9-21 K) and quiescent while still dominanted by turbulence. The ratio between the column densities of C2H and N2H+ (N(C2H)/N(N2H+)) is found to be a good tracer for the evolutionary states of PGCC cores. Gas-grain chemical model can reproduce the decreasing trend of N(C2H)/N(N2H+) as a function of time. The cores with the lowest abundances of N2H+ (X[N2H+] N(N2H+). Mapping observations are carried out toward 20 PGCC cores. The PGCC cores in Cepheus have lower N(C2H)/N(N2H+) and larger line widths compared with those in Taurus. This implies that PGCC cores in Taurus are less chemically evolved than those in Cepheus.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    109
    References
    2
    Citations
    NaN
    KQI
    []