Methyl Orange Photo-Degradation by TiO2 in a Pilot Unit under Different Chemical, Physical, and Hydraulic Conditions

2021 
The photo-catalytic degradation of a textile azo-dye as Methyl Orange was studied in an innovative unit constituted by a channel over which a layer of titanium dioxide (TiO2) catalyst in anatase form was deposited and activated by UVB irradiation. The degradation kinetics were followed after variation of the chemical, physical, and hydraulic/hydrodynamic parameters of the system. For this purpose, the influence of the TiO2 dosage (g/cm3), dye concentration (mg/L), pH of the solution, flow-rate (L/s), hydraulic load (cm), and irradiation power (W) were evaluated on the degradation rates. It was observed that the maximum dosage of TiO2 was 0.79 g/cm3 while for higher dosage a reduction of homogeneity of the cement conglomerate occurred. The Langmuir–Hinshelwood (LH) kinetic model was followed up to a dye concentration around 1 mg/L. It was observed that with the increase of the flow rate, an increase of the degradation kinetics was obtained, while the further increase of the flow-rate associated with the modification of the hydraulic load determined a decrease of the kinetic rates. The results also evidenced an increase of the kinetic rates with the increase of the UVB intensity. A final comparison with other dyes such as Methyl Red and Methylene Blue was carried out in consideration of the pH of the solution, which sensibly affected the removal efficiencies.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    0
    Citations
    NaN
    KQI
    []