The rate of convergence on Schrödinger operator

2018 
Recently, Du, Guth and Li showed that the Schrodinger operator $e^{it\Delta }$ satisfies $\lim_{t\rightarrow 0}e^{it\Delta }f=f$ almost everywhere for all $f\in H^{s}(\mathbb{R}^{2})$, provided that $s>1/3$. In this paper, we discuss the rate of convergence on $e^{it\Delta }(f)$ by assuming more regularity on $f$. At $n=2$, our result can be viewed as an application of the Du–Guth–Li theorem. We also address the same issue on the cases $n=1$ and $n>2$.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    5
    Citations
    NaN
    KQI
    []