Tumor-derived exosomal HMGB1 promotes esophageal squamous cell carcinoma progression through inducing PD1+ TAM expansion

2019 
Macrophages constitute one of the most common components of immune cells, which penetrate tumors and they have a key role in tumor prognosis. Here, we identified an unrecognized macrophage subpopulation, which favors tumorigenesis. These macrophages express programmed cell death protein 1 (PD1) in a constitutive manner and accumulates in esophageal squamous cell carcinoma (ESCC) in advanced stage of the disease and is negatively associated with the survival of ESCC patients. The PD1+ tumor-associated macrophages (PD1+ TAMs) displayed surface pattern and function akin to M2: a substantial enhancement in CD206 and IL-10 expression; a specific reduction in HLA-DR, CD64, and IL-12 expression; and a significant increase in the ability to inhibit CD8+ T-cell proliferation. Triggering of PD1 signal is effective in increasing PD1+ TAM function. Moreover, exosomal HMGB1 obtained from tumors are efficient in triggering differentiation of monocytes into PD1+ TAMs, which display phenotypic and functional properties of M2. Overall, our work is the first finding to confirm that exosomal HMGB1 obtained from ESCC can successfully trigger clonal expansion of PD1+ TAM. Further, as the macrophages exhibit an M2-like surface profile and function, thereby creating conditions for development of ESCC. Thus, effective methods of treatment include combining immunotherapy with targeting PD1+ TAMs and tumor-derived exosomal HMGB1 to resuscitate immune function in individuals suffering from ESCC.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    30
    Citations
    NaN
    KQI
    []