An approach to reduce light field sampling redundancy for flame temperature reconstruction

2021 
Flame temperature measurement through a light field camera shows an attractive research interest due to its capabilities of obtaining spatial and angular rays’ information by a single exposure. However, the sampling information collected by the light field camera is vast and most of them are redundant. The reconstruction process occupies a larger computing memory and time-consuming. We propose a novel approach i.e., feature rays under-sampling (FRUS) to reduce the light field sampling redundancy and thus improve the reconstruction efficiency. The proposed approach is evaluated through numerical and experimental studies. Effects of under-sampling methods, flame dividing voxels, noise levels and light field camera parameters are investigated. It has been observed that the proposed approach provides better anti-noise ability and reconstruction efficiency. It can be valuable not only for the flame temperature reconstruction but also for other applications such as particle image velocimetry and light field microscope.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    1
    Citations
    NaN
    KQI
    []