language-icon Old Web
English
Sign In

Fast Water Oxidation Using Iron

2010 
Photolysis of water, a long-studied strategy for storing solar energy, involves two half-reactions: the reduction of protons to dihydrogen and the oxidation of water to dioxygen. Proton reduction is well-understood, with catalysts achieving quantum yields of 34% when driven by visible light. Water oxidation, on the other hand, is much less advanced, typically involving expensive metal centers and rarely working in conjunction with a photochemically powered system. Before further progress can be made in the field of water splitting, significant developments in the catalysis of oxygen evolution are needed. Herein we present an iron-centered tetraamido macrocyclic ligand (Fe-TAML) that efficiently catalyzes the oxidative conversion of water to dioxygen. When the catalyst is combined in unbuffered solution with ceric ammonium nitrate, its turnover frequency exceeds 1.3 s−1. Real-time UV−vis and oxygen monitoring of the active complex give insights into the reaction and decay kinetics.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    490
    Citations
    NaN
    KQI
    []