Phase-SelectiveDisordered Anatase/Ordered Rutile Interface System for Visible-Light-Driven,Metal-Free CO 2 Reduction

2019 
Visible-light-driven photocatalytic CO2 reduction using TiO2 that can absorb light of all wavelengths has been sought for over half a century. Herein, we report a phase-selective disordered anatase/ordered rutile interface system for visible-light-driven, metal-free CO2 reduction using a narrow band structure, whose conduction band position matches well with the reduction potential of CO2 to CH4 and CO. A mixed disordered anatase/ordered rutile (Ad/Ro) TiO2 was prepared from anatase and rutile phase-mixed P25 TiO2 at room temperature and under an ambient atmosphere in sodium alkyl amine solutions. The Ad/Ro TiO2 showed a narrow band structure due to multi-internal energy band gaps of Ti3+ defect sites in the disordered anatase phase, leading to high visible light absorption and simultaneously providing fast charge separation through the crystalline rutile phase, which was faster than that of pristine P25 TiO2. The band gap of Ad/Ro TiO2 is 2.62 eV with a conduction band of −0.27 eV, which matches well wit...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    68
    References
    20
    Citations
    NaN
    KQI
    []