Photophysical properties and photodynamic efficiency of cationic porphyrins

2014 
Photodynamic inactivation of some microorganisms ( St. aureus, E.coli ) was investigated and their dependence on photo-physical properties of photosensitizers (PS) (cationic porphyrins and metalloporphyrins) was shown. One of the most important criteria for the effectiveness of the PS`s is the quantum yield of singlet oxygen (γ Δ ). Our investigations were shown that γ Δ of metalloporphyrins, containing Zn, significantly higher than of metal-free porphyrins (85-97% and 77-79%, respectively). Previousl y experimentally we were found that under the action cationic porphyrins and metalloporphyrins on Gram (+) and Gram (-) microorganisms efficiency of metalloporphyrins Zn-TOEt4PyP and Zn-TBut4PyP in 3-5 times was higher than the metal-free porphyrins. In this study under the action of porphyrins and their Zn-derivatives on microorganism St. aureus such an effect was confirmed. Using the LED with a peak emission of 405 nm and a power density of 70 mW/cm 2 , and irradiation time of microorganisms from 5 to 30 minutes we have found, that at a concentration of 0.1 ug/ml the highest efficiency is observed of metalloporphyrin Zn-TBut3PyP. Upon irradiation of 10 and 15 min his efficiency is 3-5 times higher than the metal-free porphyrin TOEt4PyP, and irradiation for 30 min via Zn-TBut3PyP is practically completely kills microorganisms. These data correlate with the quantum yield of singlet oxygen for photosensitizers. The 30 mindirect sun exposure (power density of 70 mW/cm 2 ) of photosensitizer solutions showed that a significant photobleaching of porphyrins and metalloporphyrins does not occur. Thus, Zn-containing cationic metalloporphyrins are highly efficient photosensitizers for photodynamic inactivation of microorganisms and PDT.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    12
    References
    1
    Citations
    NaN
    KQI
    []