Aerial scene classification via an ensemble extreme learning machine classifier based on discriminative hybrid convolutional neural networks features

2019 
ABSTRACTIdentifying a discriminative feature can effectively improve the classification performance of aerial scene classification. Deep convolutional neural networks (DCNN) have been widely used in aerial scene classification for its learning discriminative feature ability. The DCNN feature can be more discriminative by optimizing the training loss function and using transfer learning methods. To enhance the discriminative power of a DCNN feature, the improved loss functions of pretraining models are combined with a softmax loss function and a centre loss function. To further improve performance, in this article, we propose hybrid DCNN features for aerial scene classification. First, we use DCNN models with joint loss functions and transfer learning from pretrained deep DCNN models. Second, the dense DCNN features are extracted, and the discriminative hybrid features are created using linear connection. Finally, an ensemble extreme learning machine (EELM) classifier is adopted for classification due to i...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    6
    Citations
    NaN
    KQI
    []