Investigation on Common-Mode Voltage Suppression in Smart Transformer-Fed Distributed Hybrid Grids

2018 
High-frequency (HF) switching and ac-side unbalanced loads challenge smart transformer (ST)-fed hybrid grids (both ac and dc), causing common-mode (CM) voltage variations and dc-link oscillation. The HF switching introduces an HF CM voltage and the ac grid unbalanced loads introduce a fundamental frequency CM voltage in hybrid grids. The CM voltage in ST-fed distributed grids degrades the power quality, threatens the safety of the connected devices, and potentially constitutes a health risk for the operators of such devices. Therefore, this paper systematically analyzes the root causes of the ST CM voltage variations and the impacts on hybrid grids. Based on the two typical configurations (three- and four-leg converters), the performance and requirements of CM inductor filter and bypass CM filter on HF CM voltage suppression are studied in detail. By considering the CM voltage suppression and dc capacitor lifetime, a four-leg converter with improved modulation strategy and small dc bypass film capacitor is proposed. The simulation and experimental results clearly verify the feasibility and correctness of the proposed strategies.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    14
    Citations
    NaN
    KQI
    []