Time-zoomable FRET spectroscopy with a 512 x16 SPAD line sensor
2018
We demonstrate a new 512x16 single photon avalanche diode (SPAD) based line sensor with per-pixel TCSPC histogramming for time-resolved, time-zoomable, FRET spectroscopy. The line sensor can operate in single photon counting (SPC) mode as well as time-correlated single photon counting (TCSPC) and per-pixel histogramming modes. TCSPC has been the preferred method for fluorescence lifetime measurements due to its collection of full decays as a histogram of arrival times. However, TCSPC is slow due to only capturing one photon per exposure and large timestamp data transfer requirements for offline histogramming. On-chip histogramming improves the data rate by allowing multiple SPAD pulses (up to one pulse per laser period) to be processed in each exposure cycle, along with secondly reducing the I/O bottleneck as only the final histogram is transferred. This can enable 50x higher acquisition rates (up to 10 billion counts per second), along with time-zoomable histogramming operation from 1.6ns to 205ns with 50ps resolution. A broad spectral range can be interrogated with the sensor (450-900nm). Overall, these sensors provide a unique combination of light sensing capabilities for use in high speed, sensitive, optical instrumentation in the time/wavelength domain. We test the sensor performance by observation of fluorescence resonance energy transfer (FRET) between FAM and TAMRA and between EGFP and RFP FRET standards.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
6
References
2
Citations
NaN
KQI