A deep learning model to predict RNA-Seq expression of tumours from whole slide images.

2020 
Deep learning methods for digital pathology analysis are an effective way to address multiple clinical questions, from diagnosis to prediction of treatment outcomes. These methods have also been used to predict gene mutations from pathology images, but no comprehensive evaluation of their potential for extracting molecular features from histology slides has yet been performed. We show that HE2RNA, a model based on the integration of multiple data modes, can be trained to systematically predict RNA-Seq profiles from whole-slide images alone, without expert annotation. Through its interpretable design, HE2RNA provides virtual spatialization of gene expression, as validated by CD3- and CD20-staining on an independent dataset. The transcriptomic representation learned by HE2RNA can also be transferred on other datasets, even of small size, to increase prediction performance for specific molecular phenotypes. We illustrate the use of this approach in clinical diagnosis purposes such as the identification of tumors with microsatellite instability. RNA-sequencing of tumour tissue can provide important diagnostic and prognostic information but this is costly and not routinely performed in all clinical settings. Here, the authors show that whole slide histology slides—part of routine care—can be used to predict RNA-sequencing data and thus reduce the need for additional analyses.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    74
    References
    72
    Citations
    NaN
    KQI
    []