Lung regeneration after toxic injury is improved in absence of dioxin receptor

2017 
Abstract Recent experimental evidences from cellular systems and from mammalian and non-mammalian animal models highlight novel functions for the aryl hydrocarbon/dioxin receptor (AhR) in maintaining cell differentiation and tissue homeostasis. Notably, AhR depletion stimulates an undifferentiated and pluripotent phenotype likely associated to a mesenchymal transition in epithelial cells and to increased primary tumorigenesis and metastasis in melanoma. In this work, we have used a lung model of epithelial regeneration to investigate whether AhR regulates proper tissue repair by adjusting the expansion of undifferentiated stem-like cells. AhR-null mice developed a faster and more efficient repair of the lung bronchiolar epithelium upon naphthalene injury that required increased cell proliferation and the earlier activation of stem-like Clara, Basal and neuroepithelial cells precursors. Increased basal content in multipotent Sca1 + /CD31 − /CD4 − cells and in cells expressing pluripotency factors NANOG and OCT4 could also improve re-epithelialization in AhR-null lungs. The reduced response of AhR-deficient lungs to Sonic Hedgehog ( Shh ) repression shortly after injury may also help their improved bronchiolar epithelium repair. These results support a role for AhR in the regenerative response against toxins, and open the possibility of modulating its activation level to favor recovery from lesions caused by environmental contaminants.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    59
    References
    15
    Citations
    NaN
    KQI
    []