Performance of terrestrial laser scanning to characterize managed Scots pine (Pinus sylvestris L.) stands is dependent on forest structural variation

2020 
Abstract There is a limited understanding of how forest structure affects the performance of methods based on terrestrial laser scanning (TLS) in characterizing trees and forest environments. We aim to improve this understanding by studying how different forest management activities that shape tree size distributions affect the TLS-based forest characterization accuracy in managed Scots pine (Pinus sylvestris L.) stands. For that purpose, we investigated 27 sample plots consisting of three different thinning types, two thinning intensities as well as control plots without any treatments. Multi-scan TLS point clouds were collected from the sample plots, and a point cloud processing algorithm was used to segment individual trees and classify the segmented point clouds into stem and crown points. The classified point clouds were further used to estimate tree and forest structural attributes. With the TLS-based forest characterization, almost 100% completeness in tree detection, 0.7 cm (3.4%) root-mean-square-error (RMSE) in diameter-at-breast-height measurements, 0.9–1.4 m (4.5–7.3%) RMSE in tree height measurements, and
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    5
    Citations
    NaN
    KQI
    []