Ab Initio Design, Shaping, and Assembly of Free-Standing Silicon Nanoprobes

2021 
Free-standing silicon nanoprobes (SiNPs) are critical tools for intracellular bioelectrical signal recording, while a scalable fabrication of these tiny SiNPs with ab initio geometry designs has not been possible. In this work, we demonstrate a novel growth shaping of slim Si nanowires (SiNWs) into SiNPs with sharp tips (curvature radii <300 nm), tunable angles of 30°, 60°, to 120° and even programmable triangle/circular shapes. A precise growth integration of orderly single, double, and quadruple SiNPs at prescribed locations enables convenient electrode connection, transferring and mounting these tiny tips onto movable arms to serve as long-protruding (over 4-20 μm) nanoprobes. Mechanical flexibility, resilience, and field-effect sensing functionality of the SiNPs were systematically testified in liquid nanodroplet and cell environments. This highly reliable and economic manufacturing of advanced SiNPs holds a strong potential to boost and open up the market implementations of a wide range of intracellular sensing, monitoring, and editing applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    2
    Citations
    NaN
    KQI
    []