The influence of humic and fulvic acids on polytetrafluoroethylene-adsorbed arsenic: a mechanistic study.

2021 
The large-scale use of polytetrafluoroethylene has resulted in ever-increasing amounts of polytetrafluoroethylene (PTFE) microplastic particles entering the environment. Given that the environment is polluted with arsenic (As(III)), and that the environment contains significant levels of humic acid (HA) and fulvic acid (FA), how PTFE and As(III) in water interacting in the presence of HA and FA needs to be urgently investigated. The results showed that As(III) was adsorbed by PTFE in the presence of HA and FA more markedly than the absence of them Adsorption equilibrium was reached at approximately 960 min and the adsorption isotherms were found to be best fitted by the Toth model. An increase in temperature was found to destroy hydrogen bonds, resulting in inhibited, non-spontaneous adsorption; a higher pH inhibited adsorption in the range 3–7. Computational and mechanistic studies revealed that PTFE formed π complexes with HA units, which increased the number of oxygen-containing functional groups on its surface. The surface of the PTFE-HA π complex was mostly negatively charged; however, the hydrogen atoms of the hydroxyl and carboxylic acid groups exhibited large positive potentials that enabled the adsorption of As(III). When the oxygen atom on As was close to the oxygen-containing functional group on PTFE-HA, the more electronegative oxygen atom forms a special intermolecular interaction in the form of O–H···O through the medium of hydrogen, which makes As adsorb on the surface of PTFE. Pore filling, hydrogen bonding, and covalent bonding are the main ways in which PTFE adsorbs As(III) in the presence of HA and FA. PTFE also adsorbed more As(III) in the presence of HA than in the presence of FA.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    0
    Citations
    NaN
    KQI
    []