Conceptual design for a kerosene fuel-rich gas-generator of a turbopump-fed liquid rocket engine

2012 
A design method for a kerosene fuel-rich gas-generator of a liquid rocket engine using turbopumps to supply propellant was performed at a conceptual level. The gas-generator creates hot gases, enabling the turbine to operate the turbopumps. A chemical non-equilibrium analysis and a droplet vaporization model were used for the estimation of the burnt gas properties and characteristic chamber length. A premixed counter-flow flame analysis was performed for the prediction of the burnt gas properties, namely the temperature, the specific heat ratio and heat capacity, and the chemical reaction time. To predict the vaporization time, the Spalding model, using a single droplet in convective condition, was used. The minimum residence time in the chamber and the characteristic length were calculated by adding the reaction time and the vaporization time. Using the characteristic length, the design methods for the fuel-rich gas-generator were established. Finally, a parametric study was achieved for the effects of the O/F ratio, mass flow rate, chamber pressure, initial droplet temperature, initial droplet diameter and initial droplet velocity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    9
    Citations
    NaN
    KQI
    []