Novel Carbon Nanotubes Rolled from 6,6,12-Graphyne: Double Dirac Points in 1D Material

2017 
Two kinds of novel carbon nanotubes, namely, (N, 0) and (0, N) 6,6,12-graphyne nanotubes (6,6,12-GNTs), are constructed by rolling up the rectangular 6,6,12-graphyne sheets along two different sides into cylinders. The mechanical and electronic properties of 6,6,12-GNTs with varied N from 3 to 20 are investigated by using density functional theory. Unlike the single-wall carbon nanotubes, the Young’s moduli of 6,6,12-GNTs do not remain constant in the case of (N, 0), but the (0, N) tubes possess almost the same one around 0.32 TPa. The band structures and density of states are also exhibited in this work. When the tube sizes N are bigger than four, Dirac points appear at Fermi level in the band maps of (N, 0) type 6,6,12-GNTs following an even–odd law, while the (0, N) tubes are narrow-gap semiconductors with tiny band gaps between 5.5 and 247.3 meV.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    63
    References
    16
    Citations
    NaN
    KQI
    []