AMINOMETHANSULFONIC AND ALKYLAMINOMETHANSULFONIC BUFFER SYSTEMS

2019 
The investigations of acid-base interactions in aminomethanesulfonic acid (AMSA)–potassium aminomethanesulfonate–water and alkylaminomethanesulfonic acid–potassium alkylaminomethane-sulfonate–water systems, where alkyl are methyl (MeAMSA), N-(2-hydroxyethyl) (HEAMSA), n-propyl (n-PrAMSA), n-butyl (n-BuAMSA), tert-butyl (t-BuAMSA), n-heptyl (n-HpAMSA) and benzyl (BzAMSA) were performed in temperature range 293–313 К. Buffer action pH limits were determined and the buffer capacity of these systems was estimated.Based on the evaluation of buffer action pH limits of aminomethansulfonic acids, it has been found that with the help of n-PrAMSA and n-BuAMSA, it was possible to maintain the medium acidity in the range of physiological pH values throughout the range of investigated temperatures.As the temperature rises, the pH of the lower buffer limit increases for AMSA and n-BuAMSA systems, while for HEAMSA, t-BuAMSA, n-HpA-MSA and BzAMSA decreases. The value of the pH of the upper buffer threshold for all tested systems decreases during their heating. With the increase of the electron-donor properties of the N-substituent in the AMSA–MeAMSA–HEAMSA–t-BuAMSA series, the value of their electronegativity decreases to result in lowering of the pH values of the lower buf-fering action limit of these systems. For the more lipophilic N-substituents (n-C4H9, n-C7H15 and C6H5CH2), this regularity is not typical.It has been established that with increasing the CYAMSK/CYAMSA concentration ratio, the buffer capacity of YNHCH2SO3H–YNHCH2SO3K–H2O systems with hydrophilic aminomethansulfonic acids (Y = H, CH3 and HOCH2CH2) increases. For systems with lipophilic n-PrAMSA and t-BuAMSA, their buffer capacity doesn’t change at 0.4 ≤ QKOH/QYAMSA ≤ 1.0.The obtained data on the buffer capacity of the investigated systems is recommended for use in chemical analysis, microbiological and biochemical studies.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    14
    References
    3
    Citations
    NaN
    KQI
    []