Influence of GSTM1, GSTT1, and GSTP1 genetic polymorphisms on disorders in transplant patients: a systematic review.

2021 
The glutathione-S-transferase (GST) enzymes are phase II isoenzymes responsible for protection against free radicals and xenobiotics. Since these proteins are described as polymorphic, polymorphisms in genes that encode them may alter enzymatic function and contribute to oxidative stress. In this context, such polymorphisms were already associated with several diseases and multiple therapeutic outcomes. A systematic review was performed to evaluate studies regarding the association between polymorphisms in three genes encoding enzymes of the GST family - GSTM1, GSTT1, and GSTP1 - and disorders in transplant patients. A total of 125 articles on which inclusion and exclusion criteria were applied were identified at PubMed database. Thirty-two studies met the target criteria and were included in the review. The mechanisms by which GST genotypes influence the development of disorders in transplant patients differ by disorder: they may participate in it by decreasing metabolism of drugs administered to patients undergoing transplantation, then exposing them to greater toxicity; by decreasing the repair ability against oxidative stress; or by encoding proteins that may be recognized as foreign, setting of an alloimmune reaction. Although some results are better established - such as GSTM1 null genotype's role in the development of toxicity events in transplant patients - others require further evidences, as GST influence on the development of pulmonary decline and posttransplant diabetes mellitus (PTDM). The importance of investigating these associations lies in a personalized medicine, in which the high-risk genotype patient has its treatment individualized and its care for prophylaxis and surveillance increased, potentially reducing this population's morbimortality.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []