Cinnamtannin D1 Protects Pancreatic β-Cells from Glucolipotoxicity-Induced Apoptosis by Enhancement of Autophagy In Vitro and In Vivo.

2020 
In our previous study, cinnamtannin D1 (CD-1), one of the A-type procyanidin oligomers isolated from Cinnamomum tamala, was reported to have the activity of antiapoptosis in palmitic acid-treated pancreatic β cells via alleviating oxidative stress in vitro. In this study, the aim was to further disclose its protective effect and underlying mechanisms against glucolipotoxicity-induced β-cells apoptosis in vitro and in vivo. We found that CD-1 was able to dose-dependently and time-dependently activate autophagy in INS-1 pancreatic β-cells. High glucose and palmitic acid (HG/PA)-induced apoptosis and autophagy impairment could be attenuated by CD-1 in INS-1 cells as well as primary cultured murine islets. We also demonstrated that CD-1-induced autophagy was through AMPK/mTOR/ULK1 pathway. Moreover, it was shown that the effects of CD-1 on activation of Keap1/Nrf2 antioxidant signaling pathway and the amelioration of inflammation, endoplasmic reticulum stress, and apoptosis were through autophagy induction in HG/PA-treated INS-1 cells. These protective effects in vivo and hypoglycemic activity of CD-1 were also observed in diabetic db/db mice. These findings have great significance in revealing the antidiabetic mechanisms of procyanidin oligomers and paving the way for their application in the treatment of diabetes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    4
    Citations
    NaN
    KQI
    []