Phase Stability Diagrams of Group 6 Magnéli Oxides and Their Implications for Photon-Assisted Applications

2019 
Controlling the stoichiometry and metastability in functional oxides is often the key to enhance their performance for a range of important oxide-based technological applications. In this work, using the recently developed meta-generalized-gradient approximation (GGA) and hybrid density functional theory calculations, we study both stoichiometric and substoichiometric (Magneli) oxides of tungsten and molybdenum, focusing on their structural parameters, growth thermodynamics, and electronic structure for targeted photo-related applications. We report that the substoichiometric Magneli phases of tungsten oxides (namely, W5O14 and W18O49) are found to be stable under both gas- and solution-based synthesis environment, whereas the substoichiometric Magneli phases of molybdenum oxides (namely, Mo9O26, Mo5O14, and Mo4O11) prefer to form only under gas-phase synthesis. We highlight how these n-doped substoichiometric Magneli heavy metal oxides are indeed the choice candidate materials for solar water splitting (...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    88
    References
    17
    Citations
    NaN
    KQI
    []