Snail interacts with Id2 in the regulation of TNF-α-induced cancer cell invasion and migration in OSCC.

2015 
The inflammatory tumor microenvironment has been identified to play a pivotal role in tumor development and metastasis. Tumor necrosis factor-α (TNF-α) is one of the key cytokines that regulate the inflammatory processes in tumor promotion. In the current study, we treated three oral squamous cell carcinoma (OSCC) cell lines with TNF-α to study its role in inflammation-induced tumor progression. Here we show that TNF-α induces stabilization of the transcriptional repressor Snail and activates NF-κB pathway in the three OSCC cell lines. These activities resulted in the increased motility and invasiveness of three OSCC cell lines. In addition, upon dealing with TNF-α for the indicated time, three OSCC cell lines underwent epithelial-to-mesenchymal transition (EMT), in which they presented a fibroblast-like phenotype and had a decreased expression of epithelial marker (E-cadherin) and an increased expression of mesenchymal marker (vimentin). We further demonstrated that TNF-α can up-regulate the expression of Id2 while inducing an EMT in oral cancer cells. Finally, we showed that Id2 interacted with Snail which may constrain Snail-dependent suppression of E-cadherin. In conclusion, our study indicates that TNF-α induces Snail stabilization is dependent on the activation of NF-κB pathway and results in increasing cell invasion and migration in OSCC cells. Id2 may contribute to regulate the function of Snail during TNF-α-mediated EMT in OSCC. These findings have significant implications for inflammation-induced tumor promotion in OSCC.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    25
    Citations
    NaN
    KQI
    []