Microstructure and mechanical properties of titanium nitride coatings for cemented carbide cutting tools by pulsed high energy density plasma

2003 
Hard, wear-resistant and well-adhesive titanium nitride coatings on cemented carbide cutting tools were prepared by the pulsed high energy density plasma technique at ambient temperature. The results of Auger spectra analysis indicated that the interface between the coating and substrate was more than 250 nm. Under optimized deposition conditions, the highest critical load measured by nanoscratch tester was more than 90 mN, which meant that the TiN film was well adhesive to the substrate; the highest nanohardness and Young’s modulus according to nanoindentation tests were near to 27 and 450 GPa. The results of cutting tests evaluated by turning hardened CrWMn steel in industrial conditions indicated that the wear resistance and edge life of the cemented carbide tools were enhanced dramatically because of the deposition of titanium nitride coatings. These improvements were attributed to the three combined effects: the deposition and ion implantation of the pulsed plasma and the becoming finer of the grain sizes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    6
    References
    6
    Citations
    NaN
    KQI
    []