Migration without interbreeding: evolutionary history of a highly selfing Mediterranean grass inferred from whole genomes
2020
Whole genome sequences and coalescence theory allow the study of plant evolution in unprecedented detail. In this study we extend the genomic resources for the wild Mediterranean grass Brachypodium distachyon to investigate the scale of population structure and its underlying history at whole-genome resolution. The analysis of 196 accessions, spanning the Mediterranean from Iberia to Iraq, shows that the interplay of high selfing and seed dispersal rates has shaped genetic structure. At the continental scale, evolution in B. distachyon is characterized by the independent expansion of three lineages during the Upper Pleistocene. Today, these lineages may occur in sympatry yet do not interbreed. At the local scale, dispersal and selfing interact to maintain high genotypic diversity. Our study lays a foundation for the study of microevolution in B. distachyon and identifies adaptive phenotypic plasticity and frequency-dependent selection as key themes to be addressed with this model system.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
106
References
0
Citations
NaN
KQI