Comparison of EL emitted by LEDs on Si substrates containing Ge and Ge/GeSn MQW as active layers
2015
We analyzed Ge- and GeSn/Ge multiple quantum well (MQW) light emitting diodes (LEDs). The structures were grown
by molecular beam epitaxy (MBE) on Si. In the Ge LEDs the active layer was 300 nm thick. Sb doping was ranging
from 1×10 18 to 1×10 20 cm -3 . An unintentionally doped Ge-layer served as reference. The LEDs with the MQWs consist
of ten alternating GeSn/Ge-layers. The Ge-layers were 10 nm thick and the GeSn-layers were grown with 6 % Sn and
thicknesses between 6 and 12 nm. The top contact of all LEDs was identical. Accordingly, the light extraction is
comparable.
The electroluminescence (EL) analysis was performed under forward bias at different currents. Sample temperatures
between <300 K and 80 K were studied. For the reference LED the direct transition at 0.8 eV dominates. With increasing
current the peak is slightly redshifted due to Joule heating. Sb doping of the active Ge-layer affects the intensity and at
3×10 19 cm -3 the strongest emission appears. It is ~4 times higher as compared to the reference. Moreover a redshift of the
peak position is caused by bandgap narrowing.
The LEDs with undoped GeSn/Ge-MQWs as active layer show a very broad luminescence band with a peak around
0.65 eV, pointing to a dominance of the GeSn-layers. The light emission intensity is at least 17 times stronger as
compared to the reference Ge-LED. Due to incorporation of Sn in the MQWs the active layer should approach to a direct
semiconductor. In indirect Si and Ge we observed an increase of intensity with increasing temperature, whereas the
intensity of GeSn/Ge-MQWs was much less affected. But a deconvolution of the spectra revealed that the energy of
indirect transition in the wells is still below the one of the direct transition.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
11
References
1
Citations
NaN
KQI