RationalInterface Engineering for Efficient FlexiblePerovskite Light-Emitting Diodes

2020 
Although perovskite light-emitting diodes (PeLEDs) are promising for next-generation displays and lighting, their efficiency is still considerably below that of conventional inorganic and organic counterparts. Significant efforts in various aspects of the electroluminescence process are required to achieve high-performance PeLEDs. Here, we present an improved flexible PeLED structure based on the rational interface engineering for energy-efficient photon generation and enhanced light outcoupling. The interface-stimulated crystallization and defect passivation of the perovskite emitter are synergistically realized by tuning the underlying interlayer, leading to the suppression of trap-mediated nonradiative recombination losses. Besides approaching highly emissive perovskite layers, the outcoupling of trapped light is also enhanced by combining the silver nanowires-based electrode with quasi-random nanopatterns on flexible plastic substrate. Upon the collective optimization of the device structure, a record external quantum efficiency of 24.5% is achieved for flexible PeLEDs based on green-emitting CsPbBr3 perovskite.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []