Detection of information flow between cortical laminae activities and auditory evoked potentials in rats by means of Granger causality

2020 
We seek to understand the relation between invasive high-resolution data and non-invasive measurement in an animal model in an auditory sensory adaptation experimental setting. In a previous study, we estimated the mutual information between the phase of auditory evoked responses (AER) with the phase of local field potentials (LFP) of auditory cortices at different frequency ranges. The results showed a consistently high level of information sharing between the AER activities as well as the responses from the granular layer, which was known as the main thalamo-recipient layer. However, mutual information was fundamentally an undirected measure of information flow. In this study we investigated how well we could characterize direction of information flow, by using Granger causality (GC), between different cortical laminae and functional projections on to the AER activities. We obtained that based on the GC coefficients, we are able to extract the connectivity between different cortical laminae to some extend and also a strong connection between the AER and granular layer. In our future study, we would like to construct a reliable picture of network connectivity, both functionally and anatomically, between different layers at more specified frequencies and much finer temporal resolutions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    13
    References
    0
    Citations
    NaN
    KQI
    []