Stabilization in a chemotaxis model for tumor invasion

2015 
This paper deals with the chemotaxis system \[ \begin{cases} u_t=\Delta u - \nabla \cdot (u\nabla v), \qquad x\in \Omega, \ t>0, \\ v_t=\Delta v + wz, \qquad x\in \Omega, \ t>0, \\ w_t=-wz, \qquad x\in \Omega, \ t>0, \\ z_t=\Delta z - z + u, \qquad x\in \Omega, \ t>0, \end{cases} \] in a smoothly bounded domain $\Omega \subset \mathbb{R}^n$, $n \le 3$, that has recently been proposed as a model for tumor invasion in which the role of an active extracellular matrix is accounted for. It is shown that for any choice of nonnegative and suitably regular initial data $(u_0,v_0,w_0,z_0)$, a corresponding initial-boundary value problem of Neumann type possesses a global solution which is bounded. Moreover, it is proved that whenever $u_0\not\equiv 0$, these solutions approach a certain spatially homogeneous equilibrium in the sense that as $t\to\infty$, $u(x,t)\to \overline{u_0}$ ,    $v(x,t) \to \overline{v_0} + \overline{w_0}$,    $w(x,t) \to 0$    and   $z(x,t) \to \overline{u_0}$,   uniformly with respect to $x\in\Omega$, where $\overline{u_0}:=\frac{1}{|\Omega|} \int_{\Omega} u_0$, $\overline{v_0}:=\frac{1}{|\Omega|} \int_{\Omega} v_0$  and    $\overline{w_0}:=\frac{1}{|\Omega|} \int_{\Omega} w_0$.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    79
    Citations
    NaN
    KQI
    []